Type Alias torin::geometry::Size2D

source ·
pub type Size2D = Size2D<f32, Measure>;

Aliased Type§

struct Size2D {
    pub width: f32,
    pub height: f32,
}

Fields§

§width: f32

The extent of the element in the U units along the x axis (usually horizontal).

§height: f32

The extent of the element in the U units along the y axis (usually vertical).

Implementations

§

impl<T, U> Size2D<T, U>

pub fn zero() -> Size2D<T, U>
where T: Zero,

The same as Zero::zero but available without importing trait.

pub const fn new(width: T, height: T) -> Size2D<T, U>

Constructor taking scalar values.

pub fn from_lengths(width: Length<T, U>, height: Length<T, U>) -> Size2D<T, U>

Constructor taking scalar strongly typed lengths.

pub fn splat(v: T) -> Size2D<T, U>
where T: Clone,

Constructor setting all components to the same value.

pub fn from_untyped(p: Size2D<T, UnknownUnit>) -> Size2D<T, U>

Tag a unitless value with units.

§

impl<T, U> Size2D<T, U>
where T: PartialEq,

pub fn equal(self, other: Size2D<T, U>) -> BoolVector2D

Returns vector with results of “equal” operation on each component.

pub fn not_equal(self, other: Size2D<T, U>) -> BoolVector2D

Returns vector with results of “not equal” operation on each component.

§

impl<T, U> Size2D<T, U>
where T: PartialOrd,

pub fn min(self, other: Size2D<T, U>) -> Size2D<T, U>

Returns the size each component of which are minimum of this size and another.

pub fn max(self, other: Size2D<T, U>) -> Size2D<T, U>

Returns the size each component of which are maximum of this size and another.

pub fn clamp(self, start: Size2D<T, U>, end: Size2D<T, U>) -> Size2D<T, U>
where T: Copy,

Returns the size each component of which clamped by corresponding components of start and end.

Shortcut for self.max(start).min(end).

pub fn contains(self, other: Size2D<T, U>) -> bool

pub fn greater_than(self, other: Size2D<T, U>) -> BoolVector2D

Returns vector with results of “greater then” operation on each component.

pub fn lower_than(self, other: Size2D<T, U>) -> BoolVector2D

Returns vector with results of “lower then” operation on each component.

pub fn is_empty(self) -> bool
where T: Zero,

Returns true if any component of size is zero, negative, or NaN.

§

impl<T, U> Size2D<T, U>
where T: Copy,

pub fn to_array(self) -> [T; 2]

Return this size as an array of two elements (width, then height).

pub fn to_tuple(self) -> (T, T)

Return this size as a tuple of two elements (width, then height).

pub fn to_vector(self) -> Vector2D<T, U>

Return this size as a vector with width and height.

pub fn to_untyped(self) -> Size2D<T, UnknownUnit>

Drop the units, preserving only the numeric value.

pub fn cast_unit<V>(self) -> Size2D<T, V>

Cast the unit

pub fn round(self) -> Size2D<T, U>
where T: Round,

Rounds each component to the nearest integer value.

This behavior is preserved for negative values (unlike the basic cast).

enum Mm {}

assert_eq!(size2::<_, Mm>(-0.1, -0.8).round(), size2::<_, Mm>(0.0, -1.0))

pub fn ceil(self) -> Size2D<T, U>
where T: Ceil,

Rounds each component to the smallest integer equal or greater than the original value.

This behavior is preserved for negative values (unlike the basic cast).

enum Mm {}

assert_eq!(size2::<_, Mm>(-0.1, -0.8).ceil(), size2::<_, Mm>(0.0, 0.0))

pub fn floor(self) -> Size2D<T, U>
where T: Floor,

Rounds each component to the biggest integer equal or lower than the original value.

This behavior is preserved for negative values (unlike the basic cast).

enum Mm {}

assert_eq!(size2::<_, Mm>(-0.1, -0.8).floor(), size2::<_, Mm>(-1.0, -1.0))

pub fn area(self) -> <T as Mul>::Output
where T: Mul,

Returns result of multiplication of both components

pub fn lerp(self, other: Size2D<T, U>, t: T) -> Size2D<T, U>
where T: One + Sub<Output = T> + Mul<Output = T> + Add<Output = T>,

Linearly interpolate each component between this size and another size.

§Example
use euclid::size2;
use euclid::default::Size2D;

let from: Size2D<_> = size2(0.0, 10.0);
let to:  Size2D<_> = size2(8.0, -4.0);

assert_eq!(from.lerp(to, -1.0), size2(-8.0,  24.0));
assert_eq!(from.lerp(to,  0.0), size2( 0.0,  10.0));
assert_eq!(from.lerp(to,  0.5), size2( 4.0,   3.0));
assert_eq!(from.lerp(to,  1.0), size2( 8.0,  -4.0));
assert_eq!(from.lerp(to,  2.0), size2(16.0, -18.0));
§

impl<T, U> Size2D<T, U>
where T: NumCast + Copy,

pub fn cast<NewT>(self) -> Size2D<NewT, U>
where NewT: NumCast,

Cast from one numeric representation to another, preserving the units.

When casting from floating point to integer coordinates, the decimals are truncated as one would expect from a simple cast, but this behavior does not always make sense geometrically. Consider using round(), ceil() or floor() before casting.

pub fn try_cast<NewT>(self) -> Option<Size2D<NewT, U>>
where NewT: NumCast,

Fallible cast from one numeric representation to another, preserving the units.

When casting from floating point to integer coordinates, the decimals are truncated as one would expect from a simple cast, but this behavior does not always make sense geometrically. Consider using round(), ceil() or floor() before casting.

pub fn to_f32(self) -> Size2D<f32, U>

Cast into an f32 size.

pub fn to_f64(self) -> Size2D<f64, U>

Cast into an f64 size.

pub fn to_usize(self) -> Size2D<usize, U>

Cast into an uint size, truncating decimals if any.

When casting from floating point sizes, it is worth considering whether to round(), ceil() or floor() before the cast in order to obtain the desired conversion behavior.

pub fn to_u32(self) -> Size2D<u32, U>

Cast into an u32 size, truncating decimals if any.

When casting from floating point sizes, it is worth considering whether to round(), ceil() or floor() before the cast in order to obtain the desired conversion behavior.

pub fn to_u64(self) -> Size2D<u64, U>

Cast into an u64 size, truncating decimals if any.

When casting from floating point sizes, it is worth considering whether to round(), ceil() or floor() before the cast in order to obtain the desired conversion behavior.

pub fn to_i32(self) -> Size2D<i32, U>

Cast into an i32 size, truncating decimals if any.

When casting from floating point sizes, it is worth considering whether to round(), ceil() or floor() before the cast in order to obtain the desired conversion behavior.

pub fn to_i64(self) -> Size2D<i64, U>

Cast into an i64 size, truncating decimals if any.

When casting from floating point sizes, it is worth considering whether to round(), ceil() or floor() before the cast in order to obtain the desired conversion behavior.

§

impl<T, U> Size2D<T, U>
where T: Float,

pub fn is_finite(self) -> bool

Returns true if all members are finite.

§

impl<T, U> Size2D<T, U>
where T: Signed,

pub fn abs(self) -> Size2D<T, U>

Computes the absolute value of each component.

For f32 and f64, NaN will be returned for component if the component is NaN.

For signed integers, ::MIN will be returned for component if the component is ::MIN.

pub fn is_positive(self) -> bool

Returns true if both components is positive and false any component is zero or negative.

Trait Implementations§

source§

impl SizeModel for Size2D

source§

fn with_gaps(self, gap: &Gaps) -> Size2D

Get the size with the given gap, e.g padding.
§

impl<T, U> Add<&Size2D<T, U>> for Size2D<T, U>
where T: Copy + Add<Output = T>,

§

type Output = Size2D<T, U>

The resulting type after applying the + operator.
§

fn add(self, other: &Size2D<T, U>) -> Size2D<T, U>

Performs the + operation. Read more
§

impl<T, U> Add for Size2D<T, U>
where T: Add,

§

type Output = Size2D<<T as Add>::Output, U>

The resulting type after applying the + operator.
§

fn add(self, other: Size2D<T, U>) -> <Size2D<T, U> as Add>::Output

Performs the + operation. Read more
§

impl<T, U> AddAssign for Size2D<T, U>
where T: AddAssign,

§

fn add_assign(&mut self, other: Size2D<T, U>)

Performs the += operation. Read more
§

impl<T, U> Ceil for Size2D<T, U>
where T: Ceil,

§

fn ceil(self) -> Size2D<T, U>

See [Size2D::ceil].

§

impl<T, U> Clone for Size2D<T, U>
where T: Clone,

§

fn clone(&self) -> Size2D<T, U>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl<T, U> Debug for Size2D<T, U>
where T: Debug,

§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
§

impl<T, U> Default for Size2D<T, U>
where T: Default,

§

fn default() -> Size2D<T, U>

Returns the “default value” for a type. Read more
§

impl<'de, T, U> Deserialize<'de> for Size2D<T, U>
where T: Deserialize<'de>,

§

fn deserialize<D>( deserializer: D, ) -> Result<Size2D<T, U>, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserializes 2d size from tuple of width and height.

§

impl<T, U1, U2> Div<Scale<T, U1, U2>> for Size2D<T, U2>
where T: Copy + Div,

§

type Output = Size2D<<T as Div>::Output, U1>

The resulting type after applying the / operator.
§

fn div( self, scale: Scale<T, U1, U2>, ) -> <Size2D<T, U2> as Div<Scale<T, U1, U2>>>::Output

Performs the / operation. Read more
§

impl<T, U> Div<T> for Size2D<T, U>
where T: Copy + Div,

§

type Output = Size2D<<T as Div>::Output, U>

The resulting type after applying the / operator.
§

fn div(self, scale: T) -> <Size2D<T, U> as Div<T>>::Output

Performs the / operation. Read more
§

impl<T, U> DivAssign<Scale<T, U, U>> for Size2D<T, U>
where T: Copy + DivAssign,

§

fn div_assign(&mut self, other: Scale<T, U, U>)

Performs the /= operation. Read more
§

impl<T, U> DivAssign<T> for Size2D<T, U>
where T: Copy + DivAssign,

§

fn div_assign(&mut self, other: T)

Performs the /= operation. Read more
§

impl<T, U> Floor for Size2D<T, U>
where T: Floor,

§

fn floor(self) -> Size2D<T, U>

See [Size2D::floor].

§

impl<T, U> From<[T; 2]> for Size2D<T, U>

§

fn from(_: [T; 2]) -> Size2D<T, U>

Converts to this type from the input type.
§

impl<T, U> From<(T, T)> for Size2D<T, U>

§

fn from(tuple: (T, T)) -> Size2D<T, U>

Converts to this type from the input type.
§

impl<T, U> From<Vector2D<T, U>> for Size2D<T, U>

§

fn from(v: Vector2D<T, U>) -> Size2D<T, U>

Converts to this type from the input type.
§

impl<T, U> Hash for Size2D<T, U>
where T: Hash,

§

fn hash<H>(&self, h: &mut H)
where H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
§

impl<T, U1, U2> Mul<Scale<T, U1, U2>> for Size2D<T, U1>
where T: Copy + Mul,

§

type Output = Size2D<<T as Mul>::Output, U2>

The resulting type after applying the * operator.
§

fn mul( self, scale: Scale<T, U1, U2>, ) -> <Size2D<T, U1> as Mul<Scale<T, U1, U2>>>::Output

Performs the * operation. Read more
§

impl<T, U> Mul<T> for Size2D<T, U>
where T: Copy + Mul,

§

type Output = Size2D<<T as Mul>::Output, U>

The resulting type after applying the * operator.
§

fn mul(self, scale: T) -> <Size2D<T, U> as Mul<T>>::Output

Performs the * operation. Read more
§

impl<T, U> MulAssign<Scale<T, U, U>> for Size2D<T, U>
where T: Copy + MulAssign,

§

fn mul_assign(&mut self, other: Scale<T, U, U>)

Performs the *= operation. Read more
§

impl<T, U> MulAssign<T> for Size2D<T, U>
where T: Copy + MulAssign,

§

fn mul_assign(&mut self, other: T)

Performs the *= operation. Read more
§

impl<T, U> Neg for Size2D<T, U>
where T: Neg,

§

type Output = Size2D<<T as Neg>::Output, U>

The resulting type after applying the - operator.
§

fn neg(self) -> <Size2D<T, U> as Neg>::Output

Performs the unary - operation. Read more
§

impl<T, U> PartialEq for Size2D<T, U>
where T: PartialEq,

§

fn eq(&self, other: &Size2D<T, U>) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
§

impl<T, U> Round for Size2D<T, U>
where T: Round,

§

fn round(self) -> Size2D<T, U>

See [Size2D::round].

§

impl<T, U> Serialize for Size2D<T, U>
where T: Serialize,

§

fn serialize<S>( &self, serializer: S, ) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
where S: Serializer,

Serializes 2d size to tuple of width and height.

§

impl<T, U> Sub for Size2D<T, U>
where T: Sub,

§

type Output = Size2D<<T as Sub>::Output, U>

The resulting type after applying the - operator.
§

fn sub(self, other: Size2D<T, U>) -> <Size2D<T, U> as Sub>::Output

Performs the - operation. Read more
§

impl<T, U> SubAssign for Size2D<T, U>
where T: SubAssign,

§

fn sub_assign(&mut self, other: Size2D<T, U>)

Performs the -= operation. Read more
§

impl<'a, T, U> Sum<&'a Size2D<T, U>> for Size2D<T, U>
where T: 'a + Add<Output = T> + Copy + Zero, U: 'a,

§

fn sum<I>(iter: I) -> Size2D<T, U>
where I: Iterator<Item = &'a Size2D<T, U>>,

Method which takes an iterator and generates Self from the elements by “summing up” the items.
§

impl<T, U> Sum for Size2D<T, U>
where T: Add<Output = T> + Zero,

§

fn sum<I>(iter: I) -> Size2D<T, U>
where I: Iterator<Item = Size2D<T, U>>,

Method which takes an iterator and generates Self from the elements by “summing up” the items.
§

impl<T, U> Zero for Size2D<T, U>
where T: Zero,

§

fn zero() -> Size2D<T, U>

§

impl<T, U> Copy for Size2D<T, U>
where T: Copy,

§

impl<T, U> Eq for Size2D<T, U>
where T: Eq,